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A Novel Algorithm for EMG Signal Processing and
Muscle Timing Measurement

Simone Pasinetti, Matteo Lancini, Ileana Bodini, and Franco Docchio

Abstract—This paper presents a new method for the
automated processing of surface electromyography (SEMG)
signals, particularly suited for the detection of muscle activation
timing. The method has an intermediate level of complexity
between simpler (but less performing) and more complex (but in
general slower) methods, and is successfully used in the devel-
opment of biomedical devices for rehabilitation carried out by
our group. The method proposed here is based on a statistical
approach for threshold computation that is implemented without
the need of maximum voluntary contraction or relaxed state,
usually required to overcome the difficulty in obtaining the
threshold value. The method is compared with 10 popular
automated standard methods using different types of simulated
signals that approximate the behavior of real SEMG signals. Both
the number of activations detected and the onset time measured
are analyzed. The algorithm is then applied to real SEMG signals
acquired from healthy subjects. The results are finally compared
with the literature values. The results show that the proposed
algorithm is the best performing method when both the number
of activations and the activation timing are considered. In real
applications, the algorithm gives the results compatible with the
well-agreed literature data.

Index  Terms— Activation  analysis, electromyography,
measurement, muscles, signal processing, timing.

I. INTRODUCTION

URFACE electromyography (SEMG) is a widely used

technique for the evaluation of posture and movement [1].
SEMG analysis frequently requires the estimation of muscle
activation timing, as in the case of the functional character-
ization of the human movement, or of the study of muscle
synergies [2]. Muscle timing detection could also be useful in
amputated subjects, where the SEMG signal may be used for
the control of the prosthesis [3].

Muscle timing detection is defined as the measurement of
the muscle onset, i.e., the instant when the muscle goes from a
relaxed state to a contracted one, and the muscle offset, i.e., the
instant when the muscle returns to the relaxed state, during
a single movement cycle. From these two measurements,
the duration of activation can also be computed. So far,
the most common method to measure the muscle onset is
still visual inspection of raw SEMG signals, despite its poor
reproducibility [4]. In fact, visual inspection strongly depends
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on the skill and experience of the examiner and suffers from
a high subjectivity between testers and intratesters [5].

To reduce the measurement variability and duration,
a considerable amount of research has been focused on
computer-based methods for muscle timing detection. These
methods range from the simplest ones, which use single
or double thresholds to discriminate periods with contracted
muscle from periods with relaxed muscle, to more complex
ones, which use signal processing techniques, such as wavelet
transforms and SEMG signal modeling.

Single- and double-threshold methods usually perform a
three-stage signal treatment. This includes: 1) a filtering stage
(i.e., low-pass, bandpass, or moving average filtering [6]);
2) a baseline measurement stage (performed measuring the
signal amplitude during muscle relaxation or during the
subject’s maximal voluntary contraction [7], [8]); and
3) a threshold computation stage (computed using the standard
deviation of the baseline value). This group of methods
needs to set many parameters (filter cutoff frequency, baseline
length, etc.). These settings, in term, are based on the signal
morphology, and depend on the envisaged application.
Furthermore, in some cases, the nature of the algorithm is
not adequate to provide both muscle offset and contraction
duration, and, for this reason, they are mostly used for signal
onset estimation only. Simple methods, such as the ones
described above, are frequently used even today in various
applications, such as prosthetic hand control [3] and eyeglass
prescription [9].

The more sophisticated methods use wavelet transforma-
tions to calculate thresholds from the frequency content of
a local portion of the SEMG signal [10]. Other methods
use modeling techniques to reproduce the shape of the
SEMG signal [11]-[13] (in fact, at least theoretically, if
two SEMG patterns are similar, the onset/offset detection
yields the same results [2]). These methods show a high
accuracy and yield more information about the muscle activity.
However, some of them are time consuming, require a strong
computation, and need to set a large number of parameters;
some others, such as [14], differentiate clean signals from their
contaminants, but require a conspicuous training period on
clean SEMG signals to achieve good results.

Our group is in progress with collaborative developments
of biomedical devices. Examples are: 1) an exoskeleton
for assisted walk rehabilitation and 2) an orthosis for hand
rehabilitation. Both devices need real-time EMG analysis
for ideal performance/evaluation. Thus, the effectiveness of
the EMG-processing method should be combined with its
simplicity and speed of execution. We thus developed, and
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present here, a novel method for muscle timing detection. This
method may be considered at the upper level of the category
of simple methods, with a performance close to that of more
complex methods, but with a much higher simplicity. It uses
a single threshold to find muscle activations. Filtering is per-
formed by computing the root-mean-square (rms) value of the
SEMG signal. After the filtering stage, a statistical approach is
used to find a threshold value for optimal onset detection. The
combination of rms-based filtering and statistical approach
represents the novelty of our method, with no training required
before the muscle activation analysis. The computed threshold
is then processed by adding a range of hysteresis, to eliminate
the spurious activation detections due to the residual spikes
not removed by the filtering stage. Furthermore, the statistical
approach is important to simplify the signal treatment by
eliminating the baseline computation stage.

This approach needs the setting of only four parameters
and a low level of computation. In addition, the calculation of
the threshold value does not require preliminary noise level
measurements. For these reasons, the proposed method can
be used when the measurement of the maximum voluntary
contraction is difficult, when the identification of the baseline
period is not possible, and/or when the instrumentation used
is more susceptible to the environmental electrical noise.

In this paper, we describe the method developed, compare
it against the most popular automatic detection methods, and
apply it to real SEMG signals obtained from healthy subjects
to analyze its behavior in a real application.

II. DESCRIPTION OF THE ALGORITHM

The scheme of the signal treatment for muscle timing
detection, able to detect both muscle onset and offset, is shown
in Fig. 1.

A. RMS Computation

As a first step, the rms value is extracted from the
electromyographic signal. The raw SEMG signal is divided
into overlapping rectangular windows of equal amplitude 7',
each delayed by a time s. The rms—SEMG signal is computed
for each ith window using (1). Here, x represents the
amplitude of the raw SEMG signal, ¢ is the time, T is the
window width, and s is the delay between successive windows

RMS(is) = (1)

The width of each window represents a tradeoff between the
smoothness of the filtered SEMG signal and the alteration
of the timing information of the signal. In fact, higher T
values mean larger portions of the raw SEMG signal in
each window, resulting in a smoothed rms—SEMG signal that
avoids false activations (such as activations when the muscle
is relaxed). On the other side, lower T values increase the
accuracy in the activation detection time [15].

The results of the rms computation are placed in the
midpoint of each window, thus the delay parameter s sets
the time resolution of rms—SEMG signal. A lower s results
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Fig. 1. Scheme of the phases performed in the proposed algorithm for the
onset detection.

not only in a better accuracy in the estimation of the muscle
onset, but also in a higher rms—SEMG computation time. The
combination of 7" and s defines window overlapping.

RMS calculation is here appropriate, since it reflects more
accurately the behavior of the muscle motor units during
muscle contractions [16]. Kamen and Gabriel [17] suggest that
there is a quasi-linear relationship between the rms and the
magnitude of the SEMG signal. Thus, rms is a good indicator
to measure muscle activations. Moreover, in applications when
the SEMG signal is used to control actuators [18], [19],
the control using the rms—SEMG signal is more efficient
than the control using the signal derived from low-pass
filtering [20], [21].

B. Threshold Detector

The second stage of signal processing is the main stage of
the algorithm and deals with the threshold computation to dis-
criminate between contraction and relaxation. Our algorithm
uses a statistical approach to find the right threshold. The
amplitude distribution of the whole rms—SEMG signal is
evaluated, and the 5th and the 95th percentiles are selected
to compute a weighted average as follows:

Threshold = [pgs * w + p5 * (1 — w)] 2)

where p; is the ith percentile of the amplitude distribution
of the rms—SEMG signal, and w is the weight used for the
computation.

Compared with the standard methods for threshold
computation, the 95th percentile could be approximated with
the maximum voluntary contraction, while the 5th percentile
is used as an approximation of the noise level when muscles
are relaxed (similar to a baseline value in standard methods).
Using the percentiles instead of the maximum voluntary
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contraction and the baseline level greatly reduces the
likelihood of misreading the information.

The amplitude distribution of the rms—SEMG signal
depends on the type of muscle activation during each move-
ment cycle. In general, the distribution has a bimodal trend,
with the two main modes corresponding to the baseline level
(the lower one) and the contraction level (the higher one).
The cumulative distribution of the rms—SEMG has a behavior
characterized by a higher slope at the beginning (due to the
signal amplitude when the muscle is relaxed) and at the end
(due to the signal amplitude when the contractions occur),
and with a lower slope between these two. The threshold for
the muscle activations must be placed within the interval of
values with lower slope, which represent the values between
the two modes in the distribution of the rms—SEMG signal,
setting the weight w in (2).

Analyzing the cumulative distribution of the rms—SEMG
signal, appropriate values of w are between 0.2 and 0.6.
This range strongly depends on the type of muscle activation,
because muscles that remain more relaxed during one single
cycle of movement move the lower limit toward higher values,
while muscles with long contractions move the higher limit
toward lower values, thus reducing the range of appropri-
ate weights. A higher noise level [a lower signal-to-noise
ratio (SNR)] reduces the feasible range since the modes are
closer, whereas a lower noise level increases the range since
the modes are more separated.

Within this range, values close to the lower level (0.2) are
more sensitive to lower muscle activations, but could lead to
errors due to signal noise. In contrast, values close to the
higher level (0.6) are more insensitive to signal noise, but
could detect a delayed muscle timing. Hence, the weight value
generally depends on the type of movement that generates
the SEMG signal, and must be analyzed before the signal
processing.

C. Hysteresis

The last stage of the algorithm is the computation of the
level of hysteresis that is added to the threshold to avoid false
onset—offset readings. Two different limits, one higher and one
lower than the computed threshold, are used for the detection
of the rising and the falling signal crossing edges, respectively,
using

Thresholdigy = Threshold * (1 + k)
Threshold; ow = Threshold * (1 — k). 3)

The muscle is considered active when the rms—SEMG signal
exceeds the upper limit, and relaxed when it is below the lower
limit. Between these two limits, the muscle is considered as
in its previous state to get a more robust onset detection.

k is the parameter representing the amplitude of the
hysteresis range. It strongly depends on the smoothness level
of the rms—SEMG signal, and thus on the parameters used

2997

during the rms computation (window length and overlapping).
In general, lower window lengths lead to higher k values.

D. Calibration of the Algorithm Parameters

As described above, the algorithm is based on the
four parameters s, T, w, and k. The choice of the values of
these parameters requires a knowledge of the activation and
deactivation times as accurate as possible. Since these two val-
ues have a large variability in the literature, the calibration
was performed using a set of experimental data, with the
aid of an expert in SEMG reading. This approach, typical of
many biosignal measurements, is consistent with the definition
of a quantity value being a number and a reference to a
measurement procedure in the Guide to the Expression of
Uncertainty in Measurements (Joint Commitee for Guides in
Metrology) [22]. Three healthy subjects were used. All of them
were asked to follow a straight path on a plane surface at a
comfortable speed. During each walk, the SEMG signals from
the soleus muscle were acquired. Foot switch sensors were
used to split each stride. For each subject, 10 strides were
chosen randomly from the walk, resulting in a total number of
30 strides. The activation and deactivation times of each stride
were read by the expert in SEMG-gait analysis. All these indi-
vidual values were found to be consistent with those of [23].

The calibration was performed as follows: initially,
parameter s was arbitrarily fixed to 0.01 s to maintain a
high resolution for the rms computation phase. Parameters
T,w, and k were derived from the 30 activation and deac-
tivation time values using a minimization procedure. First,
the three parameters were given arbitrary values: with these
initial values our algorithm was used to compute the activation
(tacT,ALG,i)) and deactivation (fpgacT,aLG,)) times of each
stride (i = 1—30). Then, the value ¢;, i.e., the quadratic sum
of the difference between the calculated and expert values
(the latter being fact,exp,i and !pDEACT,ExP,;) Was computed
using (4), as shown at the bottom of this page.

The procedure was repeated by varying 7, w, and k within
their admissible range, until the minimum value of & was
reached.

Repeating the minimization procedure for all 30 strides,
and calculating the mean and the standard deviation of all
the resulting parameters, the data reported in Table I were
obtained.

The mean values for T,w, and k were the result of the
calibration procedure.

III. RESULTS

This section is devoted to the evaluation of the performances
of the method proposed. First, we compared our method
against the common automatic methods present in the
literature and mostly used by clinicians. For this purpose,
we used the simulated SEMG signals that combine the

& = \/ [(fACT, ALG.i — IACTEXP;)? + (IDEACT, ALG,i — IDEACTEXP, )], i=1,...

;30 “)
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TABLE I
MEAN AND STANDARD DEVIATION OF THE PARAMETERS T, w, AND k,
OBTAINED WITH THE MINIMIZATION PROCEDURE
APPLIED ON 30 STRIDES

PARAMETER  MEAN STANDARD DEVIATION
T 0.1 [s] 0.04 [s]
w 0.3 0.08
k 0.06 0.03

Gaussian functions and the white noise to realistically approx-
imate the real situations [24]. From this first comparison,
two best performing standard algorithms have been extracted
(analyzing the differences between the real and measured
onsets, and the total number of activations measured).
Then these two standard methods have been used in a
second comparison against the proposed method, to test its
performance with respect to the variation of the parameters
of the simulated signal, in particular with respect to the SNR.
Finally, the proposed method has been used to measure the
muscle timing in real SEMG signals using the acquisition
of leg muscles of healthy subjects during gait tasks. The
results have finally been compared with the literature
values.

A. Comparison With Automatic Methods From the Literature

A list of the 10 common automatic detection methods
present in the literature is shown in Table II. Methods from
1 to 5 and method 9 use the baseline level for the onset
detection, while methods 6—8 compute the threshold from the
maximal contraction. Methods 2 and 5 are suitable only for
muscle onset detection, while the other can also measure the
muscle offset. Method 10 is more complex because it uses the
95th percentiles of the signal as the threshold for the onset
detection.

All different methods were compared using a computer-
generated set of artificial SEMG signals that simulate a
muscle with a monophasic activation. The signals belong to
two classes: 1) signals with a constant resting condition before
and after the main activation and 2) signals with residual
activations during the resting period before and after the main
activation.

The first set of signals is obtained by applying a uniformly
distributed stochastic process (white noise) modulated by a
single truncated Gaussian function as in (5), as shown at the
bottom of this page, where n is the amplitude of the baseline
noise, and random is a function that generates a number with
values uniformly distributed between zero and one. With n and
the RANDOM function, white noise can be generated. The
function for the modulation is a Gaussian function centered
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Fig. 2. Example of simulated SEMG signals with (a) constant resting period
before and after the main activation and (b) residual bursts during resting
period. This figure shows the parameters used for the generation of the signals:
SNR is the signal-to-noise ratio, ¢ is the standard deviation of the Gaussian
function used for the modulation of the main activation, n is the noise level,
w represents the truncation width of the main Gaussian function, and og is
the standard deviation of the Gaussian functions used for the generation of
the bursts.

around 7.. It has an amplitude equal to SNR % n, a standard
deviation o, and a width w resulting in a truncation at
times f. — w/2 and t. + w/2.

The second set of signals was obtained starting from (5),
and modulating the resulting signals with two additional
Gaussian functions before and after the main activation
using (6), as shown at the bottom of the next page, where the
Gaussian functions generating the secondary activations have
an amplitude equal to S *x n, a standard deviation equal to og
and are placed to a distance equal to dist from the mean time
of the main activation.

An example of a simulated SEMG signal from the first class
is reported in Fig. 2(a), while a typical signal of the
second class is shown in Fig. 2(b).

n * RANDOM(0, 1),
y(t) = 1 n * RANDOM(0, 1)

n * RANDOM(0, 1),

1+SNRxe 252

when t < (tc —

)
=i+ 2)

)

(l—lC)2 w

s hen(t - —
w c—5

IA N8

(5)

when ¢ > (tc +

(SIRS
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TABLE II
STANDARD METHODS USED FOR THE FIRST COMPARISON WITH THE PROPOSED ALGORITHM
METHOD SIGNAL PROCESSING BASELINE ONSET DETECTION REFERENCE
1 Rectification + meaning average Mean of the firsts Two consecutive points [25]
(windows width 50ms) 500ms, 2s before the ~ >2 standard deviation
onset from the baseline
activity
2 Rectification + low-pass filter Mean of the 100ms First deviation>1.5 [26]
(fcur-orr=40Hz) before the onset standard deviation from
baseline
3 Rectification + low-pass filter Mean of the 50ms First deviation>3 [27]
(fcut-orr=50Hz)+meaning average before the onset standard deviation from
(windows width 20ms) baseline for at least
25ms
4 Band-pass filter (fcur.orrLow=10Hz, Mean of the 500ms of  First deviation>2 [28]
feut-orrmien=10Hz) + rectification + quite standing before  standard deviation from
meaning average (windows width 40ms) the onset baseline mean and
median
5 Rectification + low-pass filter Mean of the 100ms of  First deviation>2.5 [29]
(fcut.orr=100Hz) quite standing before  standard deviation from
the onset baseline
6 Band-pass filter (fcur.orrLow=0.8Hz, Mean of the 500ms First deviation>15% of [30]
feut-orrnicn=800Hz) + rectification + before the onset the maximal contraction
meaning average (windows width 100
acquisition points) + subtraction with the
mean value
7 Band-pass filter (fcut-orrLow=0.8Hz, Mean of the 500ms First deviation>5% of [31]
feur-orrnign=800Hz) + rectification + before the onset the maximal contraction
meaning average (windows width 100
acquisition points) + subtraction with the
mean value
8 Band-pass filter (fcur-orr,Low=0.8Hz, Mean of the 500ms First deviation>25% of
feut-orr,micn=800Hz) + rectification + before the onset the maximal contraction
meaning average (windows width 100
acquisition points) + subtraction with the
mean value
9 Rectification + low-pass filter Mean of the 240ms First deviation>1 [32]
(fcut.orr=6Hz) before the onset standard deviation from
baseline for at least 8ms
(not below for at least
16ms)
10 Rectification + band-pass filter No baseline First instant>95 [33]

(fCUT-OFF,LOW: 10Hz, fCUT-OFF,HIGHZSOOHZ)

percentile for at least
10ms

The parameters describing the simulated signals were
varied randomly (following a uniform distribution) within
the ranges described in Table III. These ranges were set to
generate signals that could reasonably approximate the real
muscle behavior. Some of the parameters kept a constant

value for all the simulations to simplify the evaluation of the
proposed algorithm.

The onset time of the simulated signals, to be later
considered as the ideal onset for the evaluations that follow,
depends on the value of the parameters. We defined it

n* RANDOM(0, 1) {1 4+ S *xe
y(t) = {n* RANDOM(0, 1) * (1 +SNR xe

nx* RANDOM(@0, 1) % [ 1 + S xe

(=1 —disy)?

2% , whent < (tc - B)
2
(l—lc)2
07 ) when (rc - %) <1< e+ %) 6)

_ l=lcdisn)?

2§ , whent > (tc + %)
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TABLE III
DESCRIPTION AND RANGES OF THE PARAMETERS FOR
SEMG SIGNAL SIMULATION

SYMBOL DESCRIPTION VALUE

n Amplitude of the baseline noise 0.2 [mV]

tc Mean time of the main Gaussian 1 [s]
function

w Truncation width of the main 0.05+0.35 [s]

Gaussian function

SNR Signal-to-noise ratio of the main  100+3 000 [%]
Gaussian function

c Standard deviation of the main ~ 0.05+0.2 [s]
Gaussian function

S Signal-to-noise ratio of the 0.6
secondary Gaussian function

dist Distance of the secondary 0.5 [s]
Gaussian functions from the
main one

og Standard deviation of the 0.03 [s]
secondary Gaussian functions

according to
TONSET = Ic — % @)

For each situation, a set of 10000 simulated SEMG signals,
with known onset, were generated and analyzed. Signals were
generated with a sampling frequency of 5 kHz and a signal
duration of 2 s. It is worth noting, from the analysis of the
generated signals of Fig. 2, that the ideal number of onset
times is one in both cases.

B. Number of Activations

The results of the evaluation of the proposed method
against the standard methods of Table II are summarized
in Fig. 3(a) and (b). Fig. 3(a) and (b) plot the value of
the average number up (abscissas) and standard deviation
SDy (ordinates) of the differences between the number of
activations detected by each method and the ideal number
(we recall that the ideal activation number should be one),
for the whole set of 10000 generated signals. In particular,
Fig. 3(a) shows the results of signals with constant resting
period, whereas Fig. 3(b) shows the results of signals with
residual bursts during the resting period. For each method
examined, activations shorter than the minimum duration
defined by the method have not been considered.

From Fig. 3(a), we note that all methods, except two,
are correctly placed around the origin (low average and low
standard deviation). Method 7 exhibits both a large positive
average and a large positive standard deviation, whereas
method 10 exhibits a negative average, thus indicating a poor
ability to detect signal onsets.

From Fig. 3(b), it is evident that the majority of the
methods performing well with the simulated signals having
a constant resting period, markedly degrade in performance
when the resting period has secondary bursts. Both averages
and standard deviations thus increase with respect to Fig. 3(a).
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Fig. 3. Mean () and standard deviation (SD) of the differences between
the number of activations measured by each method and the real number of
activations of the signals, for simulated signals with (a) constant resting period
and (b) residual bursts during the resting period. The label number represents
each method. Method O represents the proposed algorithm.

In Fig. 3(a) and Fig. 3(b), methods 2 and 5 are not plotted
being out of the graphs area. This is due to the fact that
these methods are optimized only for onset detection and
not for offset detection, and this results in an excessive
number of false activations. Of all the other methods, our
method 0 is located among the best five, as it is evident both
in Fig. 3(a) and (b).

Other than our method, the best performer for signals
of Fig. 3(a) is method 8 (uy = 2 x 1073, SDy = 0.06),
immediately followed by method 3 (uny = 26 x 1073,
SDy = 0.17), whereas for signals with residual bursts, the
best performer is method 3 (uy = 23 x 1073, SDy = 0.16).
Thus, method 3 is chosen as one of the benchmarks for the
second comparison.

C. Activation Timing

Differences between the measured and the real onset time
are an adequate indicator of the accuracy of a detection
method. Low values of average and standard deviation indicate
a high accuracy in the determination of the muscular timing.
Positive mean values indicate a delayed onset compared with
the ideal case.

Fig. 4(a) and (b) shows the average u; and the standard
deviation SD; of the difference between the onset time mea-
sured by each method and the ideal onset time [from (6)] of
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Fig. 4. Mean (u) and standard deviation (SD) of the differences between

the onsets measured by each method and the real onsets of the signals, with
respect to the signals duration, for simulated signals with (a) constant resting
period and (b) residual bursts during the resting period. The label number
represents each method. Method O represents the proposed algorithm.

the simulated signals, respectively, for signals with constant
resting period and with residual bursts during the resting
period. The differences are computed with respect to the
simulated signals duration. If more than one activation is
measured, only the longer one is considered for the mean and
standard deviation computation.

Again, all methods perform better in the case of signals with
constant resting period [Fig. 4(a)] than in the case of signals
with residual bursts [Fig. 4(b)]. However, this difference is
less marked, suggesting that the parameter u, is less sensitive
to residual bursts than parameter u,. Our method 0 shows
a good behavior in both situations despite a somewhat larger
value of SD; in the case of residual bursts (x; = 18.5 x 10735
and SD, = 0.46 s in Fig. 4(a) and x, = 69.2 x 1073 s and
SD; = 6.27 s in Fig. 4(b). This increase is probably related
to the occasional presence of residual bursts very close to the
main activation: in this case our method considers the bursts
as a part of the main activation.

For both situations, the best performers are method 9
(ur = —1.5x 1073 s and SD; = 0.41 s for signals with
constant resting period and x, = —10.9 x 1073 s and
SD; = 0.74 s for signals with residual bursts), followed by
method 4 (u; = —11.4 x 1073 s and SD, = 0.12 s for signals
with constant resting period and u; = 62.7 x 1073 s and
SD; = 0.36 s for signals with residual bursts).
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Fig. 5. RMS values of the differences between the measured and the ideal
number of activations with respect to the SNR of the simulated signals for the
proposed method (e), for method 3 (M), and for method 9 (A), for simulated

signals with (a) constant resting period and (b) residual bursts during the
resting period.

In conclusion, method 9 is chosen as the best performer and
will be used for the next comparison.

D. Comparison With the Best Performers

Following the choice of the two best performers 3 and 9 to
be compared with our method, we investigated the dependence
of all three methods on the SNR of the electromyographic
signal. The choice of SNR as the independent variable is
motivated by the fact that this parameter is exclusively related
to the acquisition instrumentation, and can be easily quantified
(other parameters, such as ¢ and w, are muscle dependent and
less controllable). Fig. 5 shows the rms values of the difference
between the number of activations measured by each method
and the ideal number of activations (1) of the simulated
signals, as a function of the signal SNR of the simulated
signals. The rms value is here considered to keep into account
both stochastic and systematic effects in one single value.
Of the two graphs, again the former refers to signals with
constant resting period, the latter to signals with residual bursts
during the resting period.

As expected, all methods show a monotonic decrease with
increasing SNR. From Fig. 5(a) and (b), we note that our
method 0, and method 3 perform significantly better than
method 9 for all SNR values, the two methods performing
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Fig. 6. RMS values of the differences between the measured and real onsets
with respect to the SNR of the simulated signals for the proposed method (e),
for method 3 (M), and method 9 (A), for simulated signals with (a) constant
resting period and (b) residual bursts during the resting period.

equally well with signals without residual bursts, and method 3
performing slightly better than ours with signals with residual
bursts.

Fig. 6(a) (signals without bursts) and (b) (signals with
bursts) shows the dependence of the difference in onset timing
(expressed as a percentage of the simulated signal duration),
again as a function of SNR, as a mean to understand how
noise affects the ability of the method to correctly locate the
muscle onset time. We clearly observe that, in this case, the
situation is opposite with respect to the case of Fig. 5. Here, in
fact, our method 0 and method 9 are the best performers at all
SNR values and for both types of signals, whereas method 3
performs significantly worse. This is evident in particular in
the case of signals with residual bursts.

As a result of both sets of figures, we can conclude that our
method is the best performing method as far as the number of
activations and activation timing is concerned.

E. Tests in Clinical Environment

Finally, our method has been tested in the clinical context to
measure the onsets and offsets of real SEMG signals acquired
from leg muscles of 10 healthy subjects during gait tasks
(only healthy subjects were chosen to simplify the comparison
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Fig. 7. Example of SEMG signal acquired from a subject performing gait
task on a treadmill at a walking speed of 3.2 km/h.

with the literature data). For each subject, signals from the
tibialis anterior muscle, the soleus muscle, and the hamstring
muscle of each leg were acquired using surface electrodes
coupled to the skin by means of a conductive gel. Electrodes
were placed on the skin using the guidelines in [34].

The subjects were asked to perform gait tasks on different
surfaces (floor and treadmill) and at different walking speeds
(1.8, 2.5, and 3.2 km/h). As a result, 900 steps were recorded
and analyzed from the subjects. Pressure sensors were placed
under the subjects’ feet to sense heel contacts. If more than
one onset (or offset) is measured, only the longer one is con-
sidered for the computation of mean and standard deviation.
Fig. 7 shows an example of a signal acquired from a sub-
ject during a walking task on a treadmill at a walking
speed of 3.2 km/h. SEMG signals were acquired using an
electromyographer BTS FreeEMG 300 (rate 1 kHz). SEMG
signals were acquired for 30 s during the walking task. Signals
were divided using foot-switch sensors placed under the left
and right toes and the left and right heels to recognize each
step. Acquired signal did not need to be filtered apart from
hardware filtration performed by electromyographer.

The results of these tests are summarized in Fig. 8 (for the
sake of simplicity, only data from the soleus muscle are
reported). Mean (dots) and standard deviation (bars) of the
onset [Fig. 8(a)] and of the offset [Fig. 8(b)] timing (again as a
percentage of the cycle duration) are shown for all 10 subjects,
differentiated for each subject between left and right legs.
Fig. 8 shows that there is a maximum standard deviation equal
to 8.3% for the onset and 4.2% for the offset (intrasubject
repeatability), both for the subject no. 5, right side. From
Fig. 8, we note that all the onsets [Fig. 8(a)] are located within
a band of 21% (intersubject repeatability) around the average
value of 24.2%, whereas the offsets [Fig. 8(b)] are located
within a band of 11.9% (intersubject repeatability) around the
average value of 59.2%.

The intrasubject and intersubject repeatability is therefore
quite satisfactory, and compatible with the normal variability
of subjects performing gait task at different speeds. The results
obtained are well consistent with the well-agreed literature
data, which place muscle onsets between 15% and 25% of
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the step cycle, and offsets between 50% and 60% of the step
cycle [23].

Analysis on the tibialis anterior muscle and the hamstring
muscle give similar results, with the main activation
compatible with the well-agreed literature data.

IV. CONCLUSION

A new algorithm for muscle timing detection has been
proposed and verified using both simulated and real
SEMG signals. It uses a statistical approach for threshold
computation and avoids the necessity of a maximum
voluntary contraction, or baseline level measurements. The
results show that, for each parameter analyzed, the proposed
algorithm is comparable with the best performing method,
which is different if the number of activations detected
or the activation timing were considered. The verification
on real SEMG signals confirms the good behavior of the
proposed algorithm, showing the results comparable with the
literature data.

This suggests that the proposed algorithm is more suitable
for applications where the measurement of the total number
of muscle activations and a good accuracy in onset detection
are required and when is not possible to measure the maximal
voluntary contraction or the baseline level.
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